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1 Department of Electrical and Computer Engineering, Villanova University,
Villanova PA, USA, {jiafeng.xie,phe}@villanova.edu
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Abstract. Along with the rapid development in quantum computing,
more attention has been switched to post-quantum cryptography (PQC)
and related research including their hardware implementations. Follow-
ing this trend, this paper presents a novel strategy to implement a
special type of polynomial multiplication used in lattice-based PQC,
where the coefficients of two input polynomials are unequal, and mod-
ulus and polynomial size are power-of-two numbers (not in favor of de-
ploying number theoretic transform). In particular, we have proposed
a Scalable Matrix originAted Large integer poLynomial multiplication
Accelerator (SMALL) for flexible and compact implementation of the
targeted polynomial multiplication that is constant-time. In total, our
efforts include: (i) we have formulated and derived a scalable matrix
originated computation strategy for the targeted polynomial multiplica-
tion in a general format; (ii) we have then presented the detailed internal
structures for the proposed polynomial multiplication accelerator based
on novel algorithm-to-architecture design techniques; (iii) we have imple-
mented the proposed accelerator based on two case study PQC schemes
to demonstrate the superior efficiency of the proposed design over the
state-of-the-art solutions. We hope the outcome of this work will be use-
ful for further PQC development.

Keywords: Hardware design · lattice-based PQC · polynomial multi-
plication accelerator · scalable matrix originated computation.

1 Introduction

In light of the fast advances in quantum technology, the post-quantum cryptog-
raphy (PQC) related research and development have reached an all-time high
[23]. Quite a number of cryptographic algorithms have been proposed for pos-
sible PQC candidates, and lattice-based cryptography is regarded as one of the
most important categories of algorithms due to their strong security proof and
relatively easy implementation complexity [18,15]. Along with this direction of
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exploration, advances in the field have gradually switched to the hardware im-
plementation side [14,23].

As polynomial multiplication over ring Zq[x]/(x
n + 1) is one of the most

important components for lattice-based PQC, a number of works have been re-
leased on related hardware implementation [20,5]. In particular, we notice a spe-
cial type of polynomial multiplication where the coefficients of the two inputs are
unequal, and the corresponding polynomial length and modulus q are numbers
of power-of-two. This polynomial multiplication can be observed in one of the
National Institute of Standards and Technology (NIST) PQC standardization
third-round candidates Saber [1] and ring binary learning-with-errors (RBLWE)-
based encryption scheme (RBLWE-ENC, a promising lightweight PQC suitable
for lightweight applications) [2,4].

Motivation. Unlike the other large integer polynomial multiplications used
in typical lattice-based PQC that can be implemented with popular fast algo-
rithm number theoretic transform (NTT) [17], the targeted polynomial mul-
tiplication here is not in favor of deploying of NTT unless field extension is
executed (which is out of the scope of this research). Meanwhile, due to its spe-
cific parameter sets that the two input polynomials’ coefficients do not have the
same size, deploying traditional fast algorithms such as Karatsuba or Toeplitz
Matrix-Vector Product (TMVP) may cause the small coefficients involved oper-
ations to become larger-sized computations (more resource usage) because of the
pre-addition related operations (may eventually offset the gain) [2]. As a result,
the recent works based on traditional fast algorithms all have relatively large
resource usage [2,11,21]. In this case, a compact design (also with flexibility) for
this polynomial multiplication is highly desirable.

Proposal. Following these considerations, in this paper, we propose a novel
polynomial multiplication algorithm to design the targeted accelerator, i.e., a
Scalable Matrix originAted Large integer poLynomial multiplication Accelerator
(SMALL). In particular, we have made three layers of innovative efforts:

(i) We present a detailed mathematical formulation process to propose a novel
scalable matrix originated computation strategy for the targeted polynomial
multiplication in a general format.

(ii) We then provide the architecture design process and related component
details to obtain the proposed SMALL with the help of novel algorithm-to-
architecture design techniques.

(iii) Finally, we give a thorough evaluation to showcase the superior perfor-
mance of the proposed accelerator over the state-of-the-art solutions (based on
two case study examples).

Overall Layout. The rest of the paper is arranged as follows. The proposed
polynomial multiplication algorithm is formulated in Section 2. Details of the
proposed accelerator are provided in Section 3. The evaluation is conducted in
Section 4. And the conclusion is given in Section 5.
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2 Related Work

This work follows a rather simple method from numerical linear algebra or a
technique from polynomial arithmetic transformations (i.e., polynomial matrix
multiplication). Specifically, the process of transforming the multiplication of
two polynomials into a Matrix-Vector Product, which some works may describe
as block-matrix multiplication. This type of transformation and strategies with
similar decomposition is observed in numerous cryptographic works and the
sciences in general and can be described as follows [7,8,12,13,16,19,22].

Consider an (n × n) matrix decomposed into v2 total (u × u) sub-matrices
and a vector decomposed into v total (1 × u) subvectors. In a similar manner,
we can express the multiplication of two univariate polynomials A(x) and B(x)
consisting of n coefficients each. First, each of these can be expressed as a finite
sum of terms where each term consists of a coefficient and power according
to the respective position (e.g., A(x) = a0 + a1x + a2x

2 + ... + an−1x
n−1).

Second, the product of two such polynomials can be decomposed in different
ways according to the computational goal. For example, if our goal is a small
Matrix-Vector Product decomposition, we can decompose, say, A(x) into a sum
of v smaller polynomials each of degree u− 1. For instance, A(x) = (a0 + a1x+
... + au−1x

u−1) + (au + au+1x+ ... + a2u−1x
u−1) + ... + (auv−u + auv−u+1x +

... + auv−1x
u−1) = (A0 + A1 + ... + Av−1). Clearly, we can multiply out with

B(x) to have B(x)(A0 + A1 + ... + Av−1). Then, for each such sub-product
(e.g., B(x)(A0)) can we can decompose B(x) and multiply out to have a sum
of v2 small products (e.g., (B0A0 + B0A1 + ... + B0Av−1) + (B1A0 + B1A1 +
... + B1Av−1) + ... + (Bv−1A0 + Bv−1A1 + ... + Bv−1Av−1). Each such small
product (e.g., B0A0) can be expressed in Matrix-Vector Product form where
B0 accounts for multiplication with respective power terms of A0 and becomes a
(u×u) matrix and A0 is left as a vector of coefficients or a (u×1) vector. Ideally,
we would like to explore further optimizations in addition to small component
decomposition and parallelism in hardware.

3 SMALL: Proposed Algorithm

Mathematical Formulation. Without loss of generality, we can just define
the targeted polynomial multiplication over ring Zq/(x

n + 1) as

W = GD mod f(x), (1)

where f(x) = xn+1, W =
∑n−1

i=0 wix
i, G =

∑n−1
i=0 gix

i, and D =
∑n−1

i=0 dix
i (wi

(t-bit), gi (t-bit), and di (h-bit) are integers over ring such that t = log2q and
h < t, and the actual h and t are determined by the specific PQC scheme).

Proposed Mathematical Derivation Strategy. For efficient implemen-
tation, it will be ideal that the original polynomial multiplication can be trans-
formed into a number of small-size sub-components, where these sub-components
can be realized through the form of serial accumulation (desirable for low-
complexity implementation). Following this principle, we set our mathematical
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formulation and derivation strategy with the following goals: (i) deriving the
polynomial multiplication into the equivalent form of the additions of small-size
sub-polynomial-multiplications (where each sub-polynomial-multiplication re-
tains certain degree of similarity and modularity); (ii) looking for unique/common
features from these sub-components such that they can be easily processed by a
format of low-resource usage.

Following the above strategy, let us rewrite (1) as

W =(Gd0 +Gd1x+ · · ·+Gdn−1x
n−1) mod f(x)

=G(0)d0 +G(1)d1 + · · ·+G(n−1)dn−1,
(2)

where G mod f(x) = G(0) = G, Gx mod f(x) = G(1),. . . , Gxn−1 mod f(x) =
G(n−1). We can then substitute xn with xn ≡ −1 to have

G(1) =− gn−1 + g0x+ · · ·+ gn−2x
n−1,

· · · · · · · · ·
G(n−1) =− g1 − g2x− · · ·+ g0x

n−1.

(3)

Let n = u× v (u, v are integers). We can then define that

D = D0 +D1x
u +D2x

2u + · · ·+Dv−1x
(v−1)u, (4)

where D0 = d0+d1x+d2x
2+ · · ·+du−1x

u−1, D1 = du+du+1x+du+2x
2+ · · ·+

d2u−1x
u−1, · · · , Dv−1 = duv−u + duv−u+1x+ · · ·+ duv−1x

u−1.
Similarly, we can have G = G0 + · · · + Gv−1x

(v−1)u, where (the similar
decomposition strategy applies to other G(i) for 1 ≤ i ≤ n − 1) G0 = g0 +
g1x+ g2x

2 + · · ·+ gu−1x
u−1, G1 = gu + gu+1x+ gu+2x

2 + · · ·+ g2u−1x
u−1, · · · ,

Gv−1 = guv−u + guv−u+1x+ · · ·+ guv−1x
u−1. Then, we can rewrite (2) into

W =G(D0 +D1x
u + · · ·+Dv−1x

(v−1)u) mod f(x)

=GD0 +G(u)D1 + · · ·+G(uv−u)Dv−1,
(5)

where the original polynomial multiplication has been decomposed into the ad-
dition of several sub-polynomial-multiplications. For further decomposition, we
just cover GD0 of (5) first (without loss of generality)

GD0 =(G0 +G1x
u +G2x

2u + · · ·+Gv−1x
(v−1)u)D0

=G0D0 +G1x
uD0 + · · ·+Gv−1x

(v−1)uD0,
(6)

where we define T
(0)
0 = G0D0, · · · , T

(0)
v−1 = Gv−1x

(v−1)uD0. We can then

substitute them into (6) to have GD0 = T
(0)
0 +T

(0)
1 + · · ·+T

(0)
v−1, where the sub-

polynomial-multiplication is further decomposed into the addition of smaller-size
components (which satisfies the first aspect of the proposed derivation strategy).

It is clear that (consider T
(0)
0 first)

T
(0)
0 =G0(d0 + d1x+ d2x

2 + · · ·+ du−1x
u−1)

=G0d0 +G
(1)
0 d1 +G

(2)
0 d2 + · · ·+G

(u−1)
0 du−1,

(7)
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which can be transformed into a matrix-vector product form of (connecting (3))

[T
(0)
0 ] =


g0 −gn−1 · · · −gN−u+1

g1 g0 · · · −gN−u+2

...
...

. . .
...

gu−1 gu−2 · · · g0




d0
d1
...

du−1

 = [G0][D0], (8)

where [G0] is an u×u matrix. Then, from [G0] we observe that: (i) the elements
in the main diagonal are identical (say g0); (ii) the rest of elements are regularly
distributed in two regions (the upper-right and the lower-left ones) and mean-
while the values in the specific region are symmetrically identical along with the
direction of the main diagonal of the matrix; (iii) the subscripts of the values
of each row/column within each region are following a pattern of decreasing se-
quence (e.g., from gu−1 to g0 and then to −gn−u+1); (iv) there are actually in
total (2u− 1) values contained in the [G0] (counting the related signs), namely
gu−1, · · · , g0, · · · , −gN−u+1, which is the values in the far left column and the
first top row. These unique features indicate that all the elements within the
matrix [G0] can be obtained through the circularly shifting of the coefficients of
polynomial G, which facilitates the actual implementation (see Section 3).

g0

g1

g2

g3

-g255

g0

g1

g2

-g254

-g255

g0

g1

-g253

-g254

-g255

g0su
bs

cr
ip

t 
de

cr
ea

si
n

g

subscript decreasing

Fig. 1: Example of n = 256 and u = 4 ([G0]), where the values are regularly
distributed in the regions (colored areas).

For a clear demonstration and clarification, we have used a case study exam-
ple of n = 256 and u = 4 and have shown [G0] in Fig. 1, where the mentioned two
regions are highlighted as the blue and green areas, respectively. One can see that
the actual values contained in the dotted red area are in total (2u−1 = 7) num-
bers (where the subscripts are decreasing). Besides, the values in the respective
region are symmetrically identical along with the line of the main diagonal.

In summary, one can conclude that these unique properties are very much
related to the elements in the matrix ([G0]) main diagonal and the other elements
are distributed following a specific order. Besides that, the matrix size u is not
a fixed number, i.e., scalable matrix originated computation.

For a more general conclusion, one can find that these observed unique fea-
tures do not apply to [G0] only. In fact, these properties apply also to other
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sub-products of (6). For instance, we can have T
(0)
1 as

T
(0)
1 =


gu gu−1 · · · g1

gu+1 gu · · · g2
...

...
. . .

...
g2u−1 g2u−2 · · · gu




d0
d1
...

du−1

 = [G1][D0], (9)

where all the elements within [G1] follow the same pattern (as specified above).

Likewise, T
(0)
2 , . . ., T

(0)
v−1 can be transformed into similar matrix-vector products,

and the involved matrices share the same features.
Similarly, G(u)D1 can be composed as

G(u)D1 = T
(1)
0 + T

(1)
1 + · · ·+ T

(1)
v−1, (10)

where T
(1)
0 = G

(u)
0 D1, T

(1)
1 = G

(u)
1 xuD1, · · · , T (1)

v−1 = G
(u)
v−1x

(v−1)uD1. The same

strategy can be extended to G(2u)D2, · · · , G(uv−u)Dv−1, as

G(2u)D2 =T
(2)
0 + T

(2)
1 + · · ·+ T

(2)
v−1,

· · · · · · · · ·

G(uv−u)Dv−1 =T
(v−1)
0 + T

(v−1)
1 + · · ·+ T

(v−1)
v−1 ,

(11)

where we can find that each sub-polynomial-multiplication of (5) has now been
further decomposed into v number of sub-components. Besides that, all these
sub-components can be transformed into the matrix-vector product forms, fol-
lowing the examples presented in (8), (9), and Fig. 1.

The above steps, mainly from (4)-(11), undoubtedly have fully satisfied the
mentioned two goals of the proposed mathematical derivation strategy. Hence,
we can summarize the proposed decomposition strategy as follows:
Proposed Strategy. For a general polynomial multiplication over ring Zq/(x

n+
1), we propose a constant-time solution in which we can follow the above steps of
(4)-(11) to decompose the polynomial multiplication into the addition of a total
v2 number of regular sub-components, where each sub-component is equivalent
to a matrix-vector product involved with a main matrix sharing the pattern of
scalable matrix based processing.

Overall, the whole polynomial multiplication can be computed as follows. Let
us again decompose W into v sub-polynomials as

W = W0 +W1x
u +W2x

2u + · · ·+Wv−1x
(v−1)u, (12)

where W0 = w0 +w1x+w2x
2 + · · ·+wu−1x

u−1, W1 = wu +wu+1x+wu+2x
2 +

· · ·+ w2u−1x
u−1, · · · , Wv−1 = wuv−u−1 + wuv−ux+ · · ·+ wuv−1x

u−1.

From (5), one can further have W0 = T
(0)
0 +T

(1)
0 + · · ·+T

(v−1)
0 =

∑v−1
j=0 T

(j)
0 ,

W1 = T
(0)
1 + T

(1)
1 + · · ·+ T

(v−1)
1 =

∑v−1
j=0 T

(j)
1 , · · · , Wv−1 = T

(0)
v−1 + T

(1)
v−1 + · · ·+

T
(v−1)
v−1 =

∑v−1
j=0 T

(j)
v−1, where each output sub-polynomial becomes the accumu-

lation of v number of T
(j)
k (for Wk =

∑v−1
j=0 T

(j)
k ). We can thus have:
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Algorithm 1 Proposed polynomial multiplication algorithm (general form)

Inputs: G and D are polynomials (the actual bit-width of the coefficients of G
and D follows the specific PQC scheme).

Output: W = GD mod f(x) (where f(x) = xn + 1).

1. Initialization (preparation) step

1.1. make ready input polynomials G and D.

1.2. W = 0.

2. Main step

2.1. decompose D into {D0, D1, · · · , Dv−1}. // see (4)

2.2. obtain G(1), G(2), · · · , G(n−1) from G, respectively. // (3)

2.3. decompose G into {G0, G1, · · · , Gv−1}.
2.4. for k = 0 to v − 1.

2.5. for j = 0 to v − 1.

2.6. obtain all the corresponding G
(ju)
k . // (13)

2.7. W = W + T
(j)
k .// scalable matrix based processing strategy (14)

2.8. end for.

2.9. Wk = W .

2.10. end for.

3. Final step

3.1. obtain the output W from serially delivered Wk.

Details of the Algorithm. Overall, the procedures presented in Algorithm
1 are clearly expressed (see the above-detailed derivation processes) except the

computation of each T
(j)
k as well as the obtaining of related G

(ju)
k during the

actual implementation process. Here we present the details of them as below.

(a) Obtaining of Related G
(ju)
k Sequentially. As the related T j

k are serially

accumulated, the obtaining of corresponding G
(ju)
k also needs to be carried out

in a sequential format. For instance, we can have [G
(0)
0 ] as

[T
(u)
0 ] =


−gn−u −gn−u−1 · · · −gn−2u+1

−gn−u+1 −gn−u · · · −gn−2u+2

...
...

. . .
...

−gn−1 −gn−2 · · · −gn−u

 , (13)

where there are actually (2u−1) number of values involved within, i.e., {−gn−1,
· · · , −gn−u, · · · , −gn−2u+1}. Comparing with the actual (2u − 1) values con-
tained in [G0], namely {gu−1, · · · , g0, · · · ,−gn−u+1}, these values (subscripts)
are circularly related to one another and there also exist an overlap of (u − 1)
values (i.e., {−gn−1, · · · ,−gn−u+1}). This property facilitates the use of circular
shift-register (CSR) to deliver out the desired outputs per every cycle for the

construction of proper G
(ju)
k (the detailed hardware structure is presented in
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Section 3). Similar strategy applies to the following obtaining G
(2u)
0 from G

(u)
0 ,

which can be extended to the obtaining of other G
(ju)
k in a sequential order.

Another aspect of obtaining G
(ju)
k in Algorithm 1 also involves the assigning

of correct signs to the corresponding coefficient within a certain [G
(ju)
k ] since

the original coefficients of the polynomial G are assumed to have positive values
(no additional sign inverting). Again, here we combine the proposed compu-
tational strategy with the feature of the sign distributions within two regions

of the matrix [G
(ju)
k ] to obtain the accurate sign assignment and the detailed

implementation process can also be seen in the next section.

(b) Computation of Each T
(j)
k . The computation of each T

(j)
k follows the

regular calculation process, i.e., transform each T
(j)
k into the equivalent matrix-

vector product and then obtain the related output (u number) in parallel through
point-wise multiplication-and-addition operations (Step 2.7 of Algorithm 1 is the

serial accumulation of T
(j)
k ). For example, (8) can be calculated as

[T
(0)
0 ] =


g0d0 − gn−1d1 − · · · − gN−u+1du−1

g1d0 + g0d1 − · · · − gN−u+2du−1

· · · · · · · · ·
gu−1d0 + gu−2d1 + · · ·+ g0du−1

 , (14)

which applies to other T
(j)
k of Algorithm 1.

4 SMALL: Proposed Accelerator

The overall structure of the proposed accelerator (SMALL) is shown in Fig. 2,
where it consists of five major components, namely the input processing com-
ponent, the sign processing component, the main computation component, the
control generating component, and the output delivering component. In terms
of the constitution of each component, there are: (i) two CSRs in the input pro-
cessing component; (ii) a sign block in the sign processing component; (iii) one
multiplication-and-addition (MAA) cell and one accumulation (AC) cell in the
main computation component; (iv) a control unit in the control generating com-
ponent; and (v) a parallel-in serial-out (PISO) shift-register (SR) in the output
delivering component. Note that the bit-width of the each data path depends on
the setup in the specific PQC scheme.

The input processing component (two CSRs) is firstly loaded with the nec-
essary coefficients from the two inputs (which takes N cycles) and then in the
following cycles it produces the correct outputs to the following components.
Connecting with Algorithm 1, while the CSR-I is producing Dj (j = 0 to v− 1)
in a sequential format, the CSR-II is responsible for generating the necessary

values (in total 2u− 1 values) to construct the corresponding G
(ju)
k . Of course,

the sign processing component (sign block) assists with the sign assigning to all

the delivered 2u − 1 values (in two paths) to form the accurate G
(ju)
k . When

all the necessary values have been fed to the main computation component, the
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CSR-I

CSR-II
Sign 
Block

Input D

Input G Output WACMAA

Dv-1,…,D1,D0

u∙h

SR (PISO)

Control Unit

ctr-2
clr

wt-1,…,w1,w0

(u-1)t

u∙t
u∙t u∙t t

ctr-1

ctr-1

(u-1)t

u∙t

input processing sign processing main computation output delivering

control generating

path-I

path-II Gk
(ju)

Tk
(j)

Fig. 2: The proposed polynomial multiplication accelerator (SMALL).

MAA cell functions to execute the computation of T
(j)
k and the following AC

cell executes the related accumulation to deliver the desired Wk (k = 0 to v−1).
As the output of the AC cell has u parallel output coefficients, the final output
delivering component transfers the parallel output into serial style to be stored
in the external memory or for other usage. The overall operation, of course, is
carried out through different types of control signals generated from the control
unit (see control generating component for more details). The whole process,
including the input loading and output delivering time, requires (n + v2 + u)
cycles of operations. The detailed internal structures as well as related functions
are presented below.

clk

en-1

clk

en-1

clk

en-1

…

M
U

X

Input D

h

d1dN-3dN-1

h

sel-1

clk

en-1

clk

en-1

clk

en-1

…

M
U

X

h

d0dN-4dN-2

h

sel-1

D
-M

U
X

ctrl-1

CSR-I

2h

Fig. 3: The CSR-I (for u = 2), where the values in the registers are initial values.

The Input Processing Component. As seen from Fig. 2, there are two
CSRs contained in this component. The CSR-I is responsible for generating the
proper Dj (j = 0 to v−1) to the MAA cell in a repeated format (repeats every v
cycles after all the input coefficients are loaded in the CSR-I). To realize this spe-
cific function, we have used a multi-path based CSR, as shown in Fig. 3, where
we have presented a case study example when u = 2. This multi-path based CSR
consists of two sub-CSRs (each sub-CSR has n/2 registers), where the input to
each sub-CSR is directly from a De-MUX (D-MUX) and two connected MUXes
attached to the input of the sub-CSR. During the loading time, the control sig-
nal to the D-MUX operates according to the sequence of “0101· · · 0101”, which
splits the coefficients of the polynomial D into two groups (each group corre-
sponds to the specific sub-CSR), i.e., group of {dn−2, dn−4, · · · , d0} and another
group of {dn−1, dn−3, · · · , d1}. When all the necessary values are loaded into the
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corresponding registers, the two MUXes in the sub-CSRs then switch to close
the loop such that in the following cycles, the output of the CSR-1 produces Dj

(j = 0 to v − 1) correctly. The design of Fig. 3 can be extended to other u.

clk

en-2

clk

en-2

clk

en-2

…

M
U

X

Input G

t

gN-1gN-3g1

t

sel-2

clk

en-2

clk

en-2

clk

en-2

…

M
U

X

t

gN-2gN-4g0

t

sel-2

D
-M

U
X

ctrl-1

CSR-II

2t
path-II

path-I
t

diag

Fig. 4: The CSR-II (u = 2), where the values in the registers are initial values.
Note “diag” refers to the value in the diagonal direction of the matrix, and is
part of the path-II output.

The CSR-II has a similar design structure as that in Fig. 3 except the output
setup. When connecting with the actual values contained in the two regions of
Fig. 1 (applies to other matrices also), the values in the upper-right region are
generated by the path-I output of the CSR-II, while the values in the lower-left
region as well as the one in the main diagonal are delivered out by the path-II.

Considering the values contained within each [G
(ju)
k ], e.g., [G

(0)
0 ] (for [G0],

see (8)), there are only {g0, g1, g255} involved (not counting the sign, which is
done by the following sign block). Hence, as seen in Fig. 4, the far right register’s
output (only bottom sub-CSR) is used for path-I delivering while both the far left
registers’ outputs (two sub-CSR) are used for path-II delivering. In the second
cycle, the CSR-II delivers the outputs of {g255, g254, g253}, which is exactly the

actual values contained in [G
(2)
0 ] (connecting with (13)). When the desired output

for [G
(254)
0 ] (for the example here, at the n/2th cycle) is delivered (g2, g1, g3), all

the registers in the CSRs will be disabled for one cycle, i.e., the same output
values are delivered out for the next cycle, which matches the actual values

contained within [G
(2)
0 ] (see (13)). Then, the registers in the CSR-II will be

enabled again in the following cycles (the disabling of registers in the CSR-II
repeats every n/2 cycles until all the proper outputs are produced).

In a more general sense u is selected as other values. All the outputs of the
far-right registers in all the sub-CSRs (not including the top one) are used to
deliver the values required for path-I, while all the far-left registers (in all the
sub-CSRs) are used to form the path-II output (can be extended to other u).

The Sign Processing Component. The sign block in the sign processing
component functions to assign the delivered outputs from the CSR-II with proper

signs according to the distribution within each G
(ju)
k . As shown in Fig. 5, there

are basically two inverter cells (marked as x = −x) attached correspondingly
to two MUXes. The inverter cell contains (u − 1) (or u) sign inverters (SIs)
according to the two’s complement representation requirement that all the bits
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x=‐xpath-I
output-I

M
U

X

s-0

(u-1)t
(u-1)t

x=‐xpath-II
output-II

M
U

X

s-1

ut
ut

Sign Block

Fig. 5: The internal structure of the sign block.

of a certain value are all inverted and then pass through the same number of
half-adder (HD) (with one carry-in set as ‘1’). Note s-0 and s-1 are generated by
the control unit.

The Main Computation Component. In this component, the MAA cell

is responsible for the calculation of corresponding T
(j)
k in Step 2.7 of Algorithm

1, while the AC cell executes the following accumulation in the same step. As
specified in (14), the MAA directly obtains the output from standard matrix-
vector based calculation, which applies to other values of u (see Fig. 6).

Mul.

Add.
path-I

path-II

h h

t

t

clk

clr

reg.Add.

t

clk

clr

reg.Add.
t

MAA

AC

output of CSR-I

Mul.
t

Mul.

Add.

Mul.
t

t

diag

Fig. 6: The main computation component (for u = 2), where Mul. and Add.
denote the multiplier and adder, respectively (reg. is the register).

As seen from Fig. 6, the MAA cell mainly consists of necessary multipliers and
adders to perform the matrix-vector product (connecting (14)). In the case study
example of u = 2, there is only one value contained in the upper-right region of

the main matrix of [T
(j)
k ] (path-I) as well as the one element in the lower-left

region (there are two values from path-II as the one in the main diagonal is also
included). Following this setup, we can have the arrangement of multipliers and
adders in the MAA cell, as shown in Fig. 6, where one input value (the element
in the main diagonal) from path-II is reused twice as the input to the multiplier
while the other input values (including the ones delivered from the CSR-I) are
connected to the corresponding multipliers, respectively, following the principle
of matrix-vector product (size of 2× 2). The produced two outputs, namely the

outputs of [T
(j)
k ], are then accumulated in the following AC cell through parallel

processing to produce two outputs. Note that the outputs of the adders in the
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AC cell are directly connected to the outside as outputs of the main computation
component, for the sake of saving one extra clock cycle spent on the registers.
The structure shown in Fig. 6 can easily extended to the design of other u.

en-3

reg.

M
U

X

ctr-3

clk

en-3

reg.

M
U

X

ctr-3

clk

PISO
2t

‘0’ t
final 

output

Fig. 7: The internal structure of the PISO SR for u = 2.

The Output Delivering Component. This component is relatively sim-
ple, and only a PISO SR is used to transfer the parallel output from the AC cell
into a serial format for further processing (which is very important in practical
applications). Fig. 7 gives an example for such SR when u = 2, which can be ex-
tended to other u. One can see that the two MUXes function to load the output
from the AC cell into the registers in the SR for serial output delivery.

double 
loop output sign

control

output clr
output ctr

outer loop 
indicator: y

inner loop 
indicator: z

output en

inner clr

input reset

0

clk

-1

CMP-

CMP

CMP

sign 
FSMclk

system 
FSMclk

(n/u)

Fig. 8: The control unit, where y (horizontal) and z (vertical) are the indices for
the elements within matrix [Gju

k ]. CMP: comparator. FSM: finite state machine.

The Control Generating Component. This component plays a key role
in the whole accelerator, i.e., generating the sign controlling signals (sign block),
clearing signals (mainly for the registers), enabling signals (mainly registers), and
selecting signals (for MUXes/D-MUXes), etc. All the necessary control signals
can be easily added/generated since we have used a double loop component
centered control unit, as shown in Fig. 8, where the entire work status for the
entire computation of W = GD mod f(x) is divided into two stages, namely the
loading and calculating (including the final output delivering) stages.

During the load stage, the control unit takes n cycles to serially receive all the
coefficients of G and D into the corresponding registers in the CSRs. Note the
control signal (ctr-1, see Fig. 2) is set as ‘0’ throughout this stage such that the
two CSRs are all working in the loading mode. Once all the values are initiated
in the related registers, the control unit switches to the calculating stage.

The overall calculating stage takes (n/u)2 cycles to produce (n/u) batches
of desired results, namely [w0, ..., wu−1], ..., [wn−u, wn−1] (from W0 to Wv−1).
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One part of the work for the control unit during this stage is to generate the
necessary sign control signals for the sign block in Fig. 2 and Fig. 5. To achieve
the accurate sign assigning to the correct coefficients, we have used a novel sign
control generating strategy here: (i) first of all, we observe that the signs for
all the element within a certain matrix [Gju

k ] (connecting Algorithm 1) can be
categorized into three conditions, namely a) all the values in the whole matrix
have positive signs, b) the values in the lower-left region have positive signs but
all negative signs in the upper-right region of the matrix, c) all the values in the
whole matrix have negative signs; (ii) secondly, we hence propose to use indices y
(horizontal) and z (vertical) to represent every element in the matrix [Gju

k ] (e.g.,
y = 0 and z = 0 represent the element in the left-top corner of the matrix) such
that we only need to consider three conditions of a) y − z = 0, b) y − z = −1,
c) z = (n/u) − 1 (the transition between two states happens whenever one of
three transition condition is satisfied), which can be realized by a three-state
finite state machine (sign FSM). As shown in Fig. 8, the sign FSM produces the
correct sign control signals, where the first bit of the sign signal determines the
signs in the lower-left region (including the main diagonal), and the second bit of
sign control signal determines the signs in the upper-right region of the matrix.

The control unit also sets the enable signal for the CSR-II to ‘0’ when tran-
sition condition c) is satisfied because the main matrix in the last computation

block of T
(v−1)
k and the main matrix in the first computation block of T

(0)
k+1

consists of exactly the same values (with only different signs). Furthermore, the
checking of the transition condition c) also enables the control unit to generate
the clear signal for the AC cell as well as the loading signal for the final PISO
component. The proposed control unit fully utilizes the reusability of checking
transition of condition c) to reduce the area usage of the entire control unit.

5 Evaluation: Implementation and Comparison

This section focuses on the thorough complexity analysis and comparison of the
proposed accelerator along with the state-of-the-art designs.

Complexity Analysis. In general, the proposed polynomial multiplication
accelerator (SMALL), as shown in Fig. 2, uses two CSRs (where each CSR has
n registers and (v+1) MUXes/D-MUXes), one sign block ((2u− 1) MUXes and
(2u− 1) SIs), one MAA cell (u2 number of multipliers and (u− 1)u adders), one
AC cell (u number of adders and the same number of registers), one PISO SR
(u number of MUXes and the same number of registers), and one control unit.
The polynomial multiplication structure requires n cycles of input loading into
the related CSRs, (n/u)2 cycles of calculation, and additional u cycles of output
delivering (the first (v − 1) groups of outputs, from W0 to Wv−2, are delivered
out during the computation time). The actual critical-path of the accelerator is
mainly determined by the selection of u and n.

Case Study Examples. For a detailed evaluation, we have used the poly-
nomial multiplication used in NIST PQC third-round standardization candidate
Saber [1] and RBLWE-ENC [2,4], respectively. Specifically, we notice that: (i) For
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Table 1: Comparison of the Complexities of The Proposed Polynomial Multipli-
cation Accelerator for Saber (FPGA Platform)

design ALMs Fmax (MHz) latency T1 (µs) ADP2

Stratix V device n = 256 (Proposed Design)

u = 1 151 353 65,536 186 28,025

u = 2 340 240 16,384 68 23,211

u = 4 969 181 4,096 23 21,937

u = 8 2,766 142 1,024 7 19,966

Cyclone V device n = 256 (Proposed Design)

u = 1 149 137 65,536 478 71,245

u = 2 403 109 16,384 151 60,732

u = 4 929 83 4,096 49 45,812

u = 8 2,908 64 1,024 16 46,311

1: T = total execution time ((latency cycle)×(1/Fmax)). 2: ADP=#ALM× T.

Saber, one polynomial has coefficients of either 13-bit or 10-bit (the 13-bit design
covers the 10-bit one), while another polynomial has coefficients of [-4,4] (4-bit).
The polynomial size n is fixed at 256. (ii) For RBLWE-ENC, one polynomial
consists of integer coefficients of log2256 = 8-bit. While another polynomial in-
volves merely binary coefficients of ∈ {0, 1}. The polynomial size can be n = 256
and n = 512,

Experimental Setup. The experimental setup of our evaluation is set as
follows: (a) we have coded the proposed polynomial multiplication accelera-
tor (SMALL), based on Saber and RBLWE-ENC’s respective parameters, with
VHDL and have verified its functionality through ModelSim (t = 13, h = 4,
and n = 256 for Saber and t = 8, h = 1, n = 256 and n = 512 for RBLWE-
ENC, respectively, as well as u = 1, u = 2, u = 3, and u = 4); (b) we have
synthesized and implemented the coded designs on the FPGA devices (both
AMD-Xilinx and Intel-Altera FPGAs) to obtain their detailed area-time com-
plexities along with the competing designs; (c) more detailed, we used the Intel
Quartus Prime 17.0 to obtain the performance for all the coded designs on the
Stratix V 5SGXMABN1F45C2 and/or Cyclone V 5CSXFC6D6F31I7ES devices;
(d) we have also obtained the corresponding implementation results for Saber
on the Artix-7 XC7A12TLCSG325-2L device through Xilinx Vivado 2019.2; (e)
for the accelerator deployed with Saber’s parameter, the coefficients of D are
represented in the sign magnitude binary numbers (following [3]), while the co-
efficients in the design for RBLWE-ENC are denoted by the 2’s complement.

FPGA based Implementation Results & Comparison. The obtained
area-time complexities, in terms of the number of adaptive logic modules (ALMs)
(or slice LUT/FF), maximum frequency (Fmax), latency cycles, total execution
time T = ((latency cycle)×(1/Fmax)), and area-delay product (ADP), of the
proposed designs with different parameter settings are shown in Tables 2, and 3
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Table 2: Comparison of the Complexities with the Existing Polynomial Multi-
plication Accelerators for Saber

design LUT FF Fmax latency ADP1 (µs)

Xilinx Artix-7 XC7A12TLCSG325-2L (n = 256)

[3] 541 301 100 19,471 105,338

[25]2 561 302 130 16,384 270,336

TW (u = 1) 202 605 178 65,536 74,372

TW (u = 2) 318 670 125 16,384 41,681

TW (u = 4) 664 798 109 4,096 24,952

TW (u = 8) 2,424 1,069 102 1,024 24,335

TW: This Work. Unit for Fmax: MHz.
1: ADP=#LUT×latency time.
2: This design also uses [25] uses 2 DSPs and 2 BRAMs (which need to be transferred
into equivalent LUT usage, i.e., 1 BRAM (8k) equals 70 slices, 1 DSP equals 128
slices, and 1 slice has 4 LUTs).

along with those of the existing designs of [3,25], respectively. Note in Table 2,
we have used the equivalent LUT calculation method to obtain the overall ADP
for [25], for a fair comparison. Meanwhile, [3] indicated that external memory is
used during the computation process, yet we don’t count it here.

As seen from Tables 1 and 2, the proposed accelerator for Saber has supe-
rior performance on both Intel-Altera and AMD-Xilinx FPGA devices, not only
limited to its scalability (but also the overall complexity). For instance, the pro-
posed design (u = 4) has at least 76.3% less ADP than the recent one of [3] (also
at least 90.8% less ADP than another recent report of [25]), not even counting
the conditions that the existing design of [3] very much relies on the memory
access (this part of resource is not included in Table 2). Meanwhile, one can no-
tice that the proposed design overall maintains very low complexity, especially
the ones of u = 1, 2, 4, which are desirable for lightweight applications.

For completeness, we highlight relevant NTT-based solutions. For instance,
Saber work from [24] requires ∼1,680 clock cycles with 2,247 LUTs (with higher
clock frequency) while our work has a latency of 1,024 clock cycles and 2,424
LUTs for u = 8. For RBLWE-ENC (n = 512) the work from [9] using t=8 and
t=32 parallel processing units, has similar latency as this work (u = 2 and u = 4)
but the ALMs are much higher, 5,073 and 6,076, respectively.

Meanwhile, as seen from Table 3, one can find that the proposed polynomial
multiplication structure significantly outperforms the recent one in [10]. For
example, the proposed design of u = 4 involves at least 98.7% less ADP than
the one in [10] on the Stratix V device when n = 256 (the similar situation
applies to nearly every case presented in Table 3). Meanwhile, considering that
the existing one also requires external resource assistance and has a limited
processing style, the proposed design has completely outperformed [10].

Discussion. The proposed algorithmic computation and accelerator design
strategies overall are highly efficient: (i) the proposed scalable matrix originated



16 J. Xie, P. He, S. Madrigal, and Ç. Koç

Table 3: Comparison of the Complexities of The Polynomial Multiplication De-
signs for RBLWE-ENC

design ALMs Fmax (MHz) latency T (µs) ADP1

Stratix V device n = 256 (Existing Design)

[10] 1,793 318.47 65,536 206 369,358

Stratix V device n = 256 (Proposed Design)

u = 1 98 553 65,536 119 11,618

u = 2 179 421 16,384 39 6,959

u = 4 357 315 4,096 13 4,644

u = 8 914 202 1,024 5 4,624

Stratix V device n = 512 (Existing Design)

[10] 3,491 288.77 262,144 908 3,169,828

Stratix V device n = 512 (Proposed Design)

u = 1 104 562 262,144 466 48,501

u = 2 192 395 65,536 166 31,822

u = 4 430 290 16,384 56 24,294

u = 8 996 207 4,096 20 19,749

1: ADP=#ALM× T (total execution time).

strategy brings both flexibility and compactness to the polynomial multiplica-
tion’s scalable processing and low complexity computation; (ii) the proposed
novel algorithm-to-architecture design techniques have produced an exception-
ally optimized accelerator (with resource usage significantly minimized).

The proposed design strategy can be further developed into other applica-
tions. For instance, we notice that the polynomial multiplication used in the ho-
momorphic encryption scheme BFV [6] also involves a similar coefficients setup.
Other research directions can also be further extending the proposed strategy
into polynomial multiplication used for other PQC schemes.

6 Conclusion

In this paper, we propose a novel constant-time scalable matrix originated com-
putation strategy for the efficient implementation of the targeted polynomial
multiplication in important PQC schemes. In total, we have: (i) proposed a new
polynomial multiplication algorithm; (ii) presented the details of the polynomial
multiplication accelerator (SMALL); (iv) demonstrated the superior efficiency
of the proposed polynomial multiplication accelerator through two case study
examples. We hope the outcome of this work will produce significant impact on
the PQC development and related computer arithmetic technique research.
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was supported by TUBITAK Project 1001-121F348.



SMALL: Scalable Matrix OriginAted Integer PoLynomial Multiplication 17

References

1. Saber, https://www.esat.kuleuven.be/cosic/pqcrypto/saber/

2. Bao, T., He, P., Bai, S., Xie, J.: Tina: Tmvp-initiated novel accelerator for
lightweight ring-lwe-based pqc. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems (01), 1–13 (2023). https://doi.org/10.1109/TVLSI.2023.3341037

3. Basso, A., Roy, S.S.: Optimized polynomial multiplier architec-
tures for post-quantum kem saber. In: 2021 58th ACM/IEEE De-
sign Automation Conference (DAC). pp. 1285–1290. IEEE (2021).
https://doi.org/10.1109/DAC18074.2021.9586219
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