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ABSTRACT

Post-quantum cryptography (PQC) has drawn significant attention
from the hardware design research community. In particular, ef-
ficient implementation for major components of PQC algorithms
like polynomial multiplication has been a hot topic recently. Fol-
lowing this trend, in this paper, we propose a novel hardware-
implemented Lightweight Accelerator for the large integer poly-
nomialMultiPlication (LAMP) used in PQC schemes. Specifically,
we target the polynomial multiplications not bound by fixed fast
algorithms like Number Theoretic Transform (NTT), i.e., Falcon
(one of the National Institute of Standards and Technology (NIST)
selected PQC algorithms) and Ring Binary Learning-with-Errors
based encryption scheme (RBLWE-ENC, a promising lightweight
PQC scheme). Overall, we have carried out three layers of inno-
vative efforts. (i) A new lightweight computation strategy for the
targeted polynomial multiplication is proposed; (ii) The new accel-
erator is then designed based on the proposed algorithm (applicable
for both targeted schemes); (iii) A thorough evaluation process is
carried out to showcase the superior performance of the proposed
accelerator over the competing designs, e.g., at least 21.2% less
area-delay product (ADP) when LAMP is used for RBLWE-ENC
(on Virtex-7 device). The proposed work is efficient and interesting,
and we hope this outcome can facilitate PQC development.

CCS CONCEPTS

• Hardware → Hardware accelerators; • Security and privacy

→ Hardware security implementation; Cryptography.
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1 INTRODUCTION

It is known that the existing cryptographic algorithms, such as
Rivest Shamir Adleman and Elliptic Curve Cryptography, can be
broken by large-scale quantum computers executing Shor’s algo-
rithm [16]. Indeed, this is the reason the National Institute of Stan-
dards and Technology (NIST) started the post-quantum cryptogra-
phy (PQC) project for standardization [4] and has selected the first
batch of algorithms for standardization in July of 2022 [4]. Among
these selected algorithms, Falcon has gained substantial attention
due to its unique algorithmic features and related implementation
challenges (especially on hardware platforms) [7].

Apart from the general-purpose PQC standardization process,
application-specific PQC, such as lightweight PQC, has also at-
tracted the crypto community’s interest [3, 18] (the recent National
Science Foundation Secure and Trustworthy Cyberspace Principal
Investigators’ Meeting 2022 (SaTC PI Meeting’22) identified “light-
weight PQC" as one of the future research directions [3]). Corre-
spondingly, Ring-Binary-Learning-with-Errors (RBLWE) [6], a ring
variant of binary-learning-with-errors (BLWE), is very promising
for such applications. Since the initial introduction of the RBLWE-
based encryption scheme (RBLWE-ENC) [6], quite a number of
research works have been released [5, 9, 14, 15, 19].

Motivation and Challenges. It is observed that large integer
polynomial multiplication is the major arithmetic component in
both Falcon and RBLWE-ENC. Following the recent trend in the
field that efficient and lightweight implementations of the poly-
nomial multiplication deployed in PQC algorithms have become
an important topic [12], it will be interesting if a general hard-
ware implementation strategy can be developed for the polynomial
multiplication used in the mentioned two PQC. Unlike other PQC
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algorithms such as Kyber and Dilithium [4], where the algorithmic
operations are directly built-in with number theoretic transform
(NTT), the polynomial multiplications of Falcon and RBLWE-ENC
are open to other types of implementation strategies. For instance,
Falcon’s signature verification phase needs a complete polynomial
multiplication process, and hence, the related implementation is
not limited to necessarily NTT, while the parameter sets of RBLWE-
ENC are not in favor of deploying NTT. As a result, researching in
this area has become very interesting.

On the other hand, there exist several challenges to obtaining the
proposed goal: (i) the coefficients’ setup for Falcon and RBLWE-
ENC vary from each other; (ii) hardware designs for Falcon are
still not abundant [7]; (iii) the polynomial-size of related schemes
can be relatively large, e.g., 𝑛 = 1, 024 for Falcon, and thus, efficient
and lightweight implementation is challenging.

Proposed Plan. Since the parameter sets of RBLWE-ENC are a
little bit unique, we consider its implementation strategy first. It is
observed that the polynomial multiplication of RBLWE-ENC has
unequal-sized coefficients between two input polynomials, i.e., one
binary polynomial and the other integers [14]. This setup brings
challenges when deploying fast algorithms like Karatsuba as binary
polynomial has to be split to be added respectively, and these addi-
tions increase the following operations’ coefficient size including
the related point-wise multiplications. Consequently, the gain of
using a fast algorithm in this case may be offset. Therefore, sev-
eral existing implementations for RBLWE-ENC were based on the
schoolbook method or the variants [14, 15, 19]. While polynomial
multiplication of Falcon can use NTT, the schoolbook method can
also be efficient (according to a recent paper’s study [17]). There-
fore, we propose to use a schoolbook-based new method to derive
an efficient computation strategy for transforming the targeted
polynomial multiplications into desired lightweight accelerators.

Major Contributions. Following the above discussions, we
propose a novel design strategy, i.e., Lightweight Accelerator for
polynomial MultiPlication (LAMP), for Falcon and RBLWE-ENC.
Overall, our main contributions include:

• We have rigorously formulated the major arithmetic opera-
tion of Falcon and RBLWE-ENC into a desired computation
form for lightweight realization.

• We have designed the proposed LAMP accelerator with the
help of a series of optimization techniques fitting respective
PQC schemes.

• We have carried out a thorough evaluation to demonstrate
the efficiency of the proposed accelerator.

The rest of the paper is organized as follows: Section 2 provides
preliminary knowledge of this work. The proposed computation
strategy is presented in Section 3. Accelerator and optimization
techniques are described in Section 4. Evaluation and conclusions
are given in Sections 5 and 6, respectively.

2 PRELIMINARY KNOWLEDGE

Notations. The following notations are used throughout the paper:
(i) 𝑛 is the polynomial size (security level); (ii) the targeted polyno-
mial multiplication relies on the operations over ring Z𝑞/(𝑥𝑛 + 1);
(iii) 𝑛 = 𝑢𝑣 (𝑢 and 𝑣 are integers).

Falcon. Falcon is a CCA-2 (Indistinguishability under Adaptive
Chosen Ciphertext Attack) digital signature scheme selected by
NIST [1, 2]. Overall, Falcon scheme can be described as: Falcon
= GPV framework + NTRU lattices + Fast Fourier sampling [2],
which is the consummation of many previous years’ efforts. The
details of Falcon’s algorithmic features can be seen at [2].

RBLWE-ENC. RBLWE is a ring variant of BLWE with small key
size and computational complexity (see its details in [6]). RBLWE-
ENC retains the average hardness of the RBLWE problem, and
analyses have ensured that it is secure enough for lightweight
applications [6, 10]. As lightweight PQC is highlighted in the recent
NSF SaTC PI Meeting’22 [3], the research on RBLWE-ENC becomes
ever more important.

Polynomial Multiplication for Falcon and RBLWE-ENC.

Both schemes use polynomial multiplication over ring Z𝑞/(𝑥𝑛 + 1)
as one of the major arithmetic components [2, 6]. The coefficients
of the input/output polynomials for Falcon are all 14-bit since 𝑞 =

12, 289 [2]; while RBLWE-ENC uses one input of 1-bit coefficients
and another of 8-bit coefficients (output is 8-bit) since 𝑞 = 256 [6].
Besides that, the polynomial degree of Falcon is 𝑛 = 512/1, 024,
and 𝑛 = 256/512 for RBLWE-ENC.

3 PROPOSED ALGORITHM

Without loss of generality, we define the major arithmetic operation
(polynomial multiplication) for Falcon and RBLWE-ENC as

𝑇 = 𝐺𝐵 mod 𝑓 (𝑥), (1)

where 𝑓 (𝑥) = 𝑥𝑛 + 1, 𝑇 =
∑𝑛−1
𝑖=0 𝑡𝑖𝑥

𝑖 , 𝐺 =
∑𝑛−1
𝑖=0 𝑔𝑖𝑥

𝑖 , and 𝐵 =∑𝑛−1
𝑖=0 𝑏𝑖𝑥

𝑖 (bit-widths of 𝑡𝑖 , 𝑔𝑖 , and 𝑏𝑖 are according to the specific
scheme). Then, we have

𝑇 =𝐵𝑔0 + · · · + 𝐵𝑔𝑛−1𝑥𝑛−1 mod (𝑥𝑛 + 1)

=𝑔0

𝑛−1∑︁
𝑖=0

𝑏𝑖𝑥
𝑖 mod (𝑥𝑛 + 1) + · · ·

+𝑔𝑛−1𝑥𝑛−1
𝑛−1∑︁
𝑖=0

𝑏𝑖𝑥
𝑖 mod (𝑥𝑛 + 1),

(2)

where we can substitute with 𝑥𝑛 ≡ −1 to further have
𝑡0 =𝑔0𝑏0 − 𝑔𝑛−1𝑏1 − · · · − 𝑔1𝑏𝑛−1,

𝑡1 =𝑔1𝑏0 + 𝑔0𝑏1 − · · · − 𝑔2𝑏𝑛−1,

· · · · · · · · ·
𝑡𝑛−1 =𝑔𝑛−1𝑏0 + 𝑔𝑛−2𝑏1 + · · · + 𝑔0𝑏𝑛−1,

(3)

where it is seen that 𝑡0 can be obtained through the additions of
𝑛 point-wise multiplications (similar to other 𝑡𝑖 , 1 ≤ 𝑖 ≤ 𝑛 − 1).
This strategy was used in [8, 11, 14] to design compact polynomial
multiplication for RBLWE-ENC (not Falcon) since the involved
point-wise operations have small area usage. This strategy, however,
suffers from the major drawback that the processing speed is low
and related input routing is expensive (one large-size 𝑛-to-1 MUX
is used in this case).

Proposed Strategy. We propose a new computation strategy to
enhance the processing speed while maintaining low computational
complexity. The key ideas of the proposed strategy include: (i) the
point-wise multiplications within single 𝑡𝑖 of (3) are now computed
through multiple channels to speed up the producing of the outputs;
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(ii) the input routing resources, with respect to coefficients of 𝐵 and
𝐺 , are evenly distributed to minimize the computational complexity.
Major steps of this strategy are listed below:

(i) Let us first define [𝐺 (𝑛−1) ] = [𝑔𝑛−1, 𝑔𝑛−2, · · · , 𝑔0], where
[𝐺 (𝑛−1) ]0 = 𝑔𝑛−1, [𝐺 (𝑛−1) ]1 = 𝑔𝑛−2, · · · , [𝐺 (𝑛−1) ]𝑛−1 = 𝑔0 (sim-
ilar definition applies to other [𝐺 (𝑖 ) ], 1 ≤ 𝑖 ≤ 𝑛 − 1).

(ii) Let 𝑛 = 𝑢𝑣 (𝑢 and 𝑣 are integers), we can decompose [𝐺 (𝑛−1) ]
into𝑢 sub-vectors (each vector has 𝑣 elements): [𝐺 (𝑛−1)

0 ] = [𝑔𝑛−1, · · · ,
𝑔𝑛−𝑣], · · · , [𝐺 (𝑛−1)

𝑢−1 ] = {𝑔𝑣−1, · · · , 𝑔0}, where [𝐺 (𝑛−1)
0 ]0 = 𝑔𝑛−1,

· · · , [𝐺 (𝑛−1)
0 ]𝑣−1 = 𝑔𝑛−𝑣 , · · · , [𝐺 (𝑛−1)

𝑢−1 ]𝑣−1 = 𝑔0. Note that the
same definition applies to other 𝐺 (𝑖 ) .

(iii)We can also define that [𝐵0] = [𝑏0, . . . , 𝑏𝑣−1]𝑇 , · · · , [𝐵𝑢−1] =
[𝑏𝑛−𝑣, . . . , 𝑏𝑛−1]𝑇 , where [𝐵0]0 = 𝑏0, · · · , [𝐵𝑢−1]𝑣−1 = 𝑏𝑛−1. Thus,
we have the proposed algorithm as

Algorithm 1: Proposed algorithm for polynomial multipli-
cation of Falcon and RBLWE-ENC
Input :𝐺 and 𝐵 (bit-widths are determined by the specific

scheme);
Output :𝑇 = 𝐺𝐵 mod 𝑓 (𝑥) (𝑓 (𝑥) = 𝑥𝑛 + 1);

Initialization step

1 [𝑇 ]0 = · · · = [𝑇 ]𝑢−1 = 0;
2 Decompose 𝐵 into [𝐵0], [𝐵1], · · · , [𝐵𝑢−1];
3 Obtain [𝐺 (𝑛−1) ] as [𝐺 (𝑛−1)

0 ], [𝐺 (𝑛−1)
1 ], · · · , [𝐺 (𝑛−1)

𝑢−1 ];
Main step

4 for 𝑖 = 𝑛 − 1 downto 0 do
5 for 𝑗 = 0 to 𝑣 − 1 do
6 [𝑇 ]0 = [𝑇 ]0 + [𝐺 (𝑖 )

0 ] 𝑗 [𝐵0] 𝑗 ;
7 · · · · · · · · · ;
8 [𝑇 ]𝑢−1 = [𝑇 ]𝑢−1 + [𝐺 (𝑖 )

𝑢−1] 𝑗 [𝐵𝑢−1] 𝑗 ;
9 end

10 𝑡𝑖 = [𝑇 ]0 + · · · + [𝑇 ]𝑢−1;
11 Get [𝐺 (𝑖−1) ] from [𝐺 (𝑖 ) ]. // until [𝐺 (0) ];
12 end

Final step

13 Obtain output 𝑇 from the serially produced 𝑡𝑖 ;

Note that to get [𝐺 (𝑖−1) ] from [𝐺 (𝑖 ) ] (Line 11), only circular-
shifting of all related coefficients is needed with one value’s sign
inverted (see the expressions of 𝑡𝑖 in (3)): the first coefficient of
the 𝐺 (𝑖 ) becomes the negative value, as the 𝑛th coefficient of the
𝐺 (𝑖−1) ; and meanwhile all the coefficients of𝐺 (𝑖 ) (from 𝑖 = 𝑛− 1 to
0) are circularly shifted (not counting the signs)). We also observe
that all the coefficients of𝐺 (𝑛−1) have not been inverted, and thus,
we can start the computation with 𝐺 (𝑛−1) first.

Features. The proposed algorithm allows us to process multiple
point-wise operations (multiplications and accumulations, Lines
6-8) simultaneously while reducing the input routing cost, which
is desirable for Falcon (especially that 𝑛 in Falcon is relatively
large, e.g., 𝑛 = 1, 024 [2]). Following the algorithmic procedure of
Algorithm 1, we will design the accelerators in the next section,
first for Falcon and then for RBLWE-ENC.
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Figure 1: The proposed LAMP for Falcon (𝑢 = 4), where the

black box denotes the register.
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the values in the registers are initially loaded data.

4 LAMP: PROPOSED ACCELERATOR

We follow Algorithm 1 to present the design (LAMP) for Falcon
first (because of its complicated architectural setup), which is then
extended to RBLWE-ENC.

4.1 LAMP for Falcon

The proposed LAMP for Falcon is shown in Fig. 1, where we have
used 𝑢 = 4 as a case study example (which can be easily extended
to other cases of𝑢). This proposed accelerator consists of five major
components: input circular shift-registers (CSRs), input-routing
unit, multiplication-and-accumulation (MAA) unit, final addition
(FA) unit, and control unit. These components’ respective internal
structures and functions are introduced below.

The CSR for 𝐺 produces [𝐺 (𝑛−1) ], [𝐺 (𝑛−2) ], and so on, and
finally [𝐺 (0) ], according to Line-11 of Algorithm 1. The four 𝑛/4-
to-1 MUXes in the input-routing unit function to produce needed
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function mod_reducer(C)
C0 ← C mod 2m

C1 ← C/2m

   return kC0 - C1

end function
(note: for q=12,289,m=12)

Figure 4: Function of the mod reducer, from [13].

[𝐺 (𝑖 )
𝑘

] 𝑗 (𝑘 = 0, 1, 2, 3) based on Lines 5-9 (Algorithm 1). The details
for CSR of [𝐺 (𝑖 ) ] are shown in Fig. 2. After the CSR for𝐺 is loaded
with [𝐺 (𝑛−1) ], the selecting signals to these four 𝑛/4-to-1 MUXes
begin to select each of these connected output data from CSR to be
delivered to the following MAA unit for calculation, which lasts 𝑛/4
cycles. Then, CSR circularly shifts one position (with the help of the
sign cell) to produce [𝐺 (𝑛−2) ] (Line-11 of Algorithm 1) for further
MUX-based processing again (this process lasts for 𝑛 rounds). Note
that the sign cell involves a series of inverters followed by 1-bit
half adders (and the least significant bit is added with ‘1’) to meet
the two’s complement computation requirement (see Fig. 2).

There are, in total, four MAA blocks in the accelerator of Fig. 1,
and its internal structure is described as follows. As shown in Fig. 3,
each MAA block contains one multiplier (inserted with three layers
of registers for pipelining), one mod reducer, two simple reducers,
one adder, and two registers. Due to the specific 𝑞 of Falcon, we
have deployed the modular reduction method in [13] to obtain the
accurate result. The function of the mode reducer is shown in Fig.
4, but it does not always produce the desired outcome after modulo
operation (16-bit) [13], and a simple reducer is needed. The simple
reducer basically checks the reduced value (mainly on the four most
significant bits (MSBs) of its input) and then decides to subtract
𝑞 (or 5𝑞/4𝑞/3𝑞/2𝑞/0) to obtain the correct output (which is exactly
14-bit). The MAA block produces one output after all inputs to the
𝑛/4-to-1 MUX are routed. Related outputs are then added through
the FA unit to produce 𝑡𝑖 (according to Algorithm 1).

Meanwhile, the CSR for 𝐵 is shown in Fig. 5, where four 𝑛/4-
length sub-CSRs are involved to produce the needed output (D-
MUX: De-MUX). Note that the registers placed at the output of the
CSR for 𝐵 are for lining up with the input routing unit, i.e., the
outputs are delayed by registers (see Fig. 1).

Finally, the control unit (mainly a finite state machine (FSM))
generates all the needed signals for LAMP’s proper operation. The
FSM consists of two counters and other related logic cells. One
counter is responsible for the counting of 𝑛/4 inputs for the two
𝑛/4-to-1 MUXes, as specified in Fig. 1. While another counter is
responsible for counting the repeated operation for the generating
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Figure 5: CSR for [𝐵] (where the values in the registers repre-

sent those that are loaded with initial values).

of the control signal to the MUXes for 𝑛 times. Meanwhile, the other
control signals such as “clr" (clear), “en" (enable), “sel-1" and other
ones in the CSR (see Fig. 2) can be generated by the logic functions
related to the two counters.

The accelerator of Fig. 1 can be easily extended to the design
with other values of 𝑣 , where the differences lay mainly on the
number of the MUXes (the number of MUXes × the size of the MUX
= 𝑛) and the increased number of MAA blocks (also the extra adders
to add the related outputs together).

4.2 Extension to RBLWE-ENC

Due to the specific parameter setup, LAMP involves a simpler struc-
ture than Falcon when it is extended to RBLWE-ENC. As shown
in Fig. 6 (where we have again used 𝑢 = 4 as the case study ex-
ample), the accelerator contains similar components as those in
Fig. 1, except there is an extra unit involved (to add another 8-bit
polynomial, for the sake of comparing with the existing designs
like [14]). Note that in this case, we define another polynomial as
𝐷 , and the final output becomes𝑊 (Fig. 6).

The input CSRs in Fig. 6 are similar to those in Fig. 1 except the
processing bit-widths. The MAA blocks in the MAA unit involve
a much simpler structure than Fig. 1 as the parameter setting of
RBLWE-ENC allows natural modular reduction (no specifically
designed mod reducer and simple reducer). The multiplier in the
MAA block is simply an AND cell, which delivers its result to the
following accumulation cell (an adder looped with a register). When
the accumulated output of each MAA block is available after the
adder ((𝑛/4−1) cycles after the first inputs are fed to the multiplier),
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it is then delivered to the FA unit and go through the extra unit (for
another addition) to yield the final result.

4.3 Brief Summary

Overall, LAMP is well designed for lightweight and compact im-
plementation of the polynomial multiplication used in Falcon and
RBLWE-ENC. LAMP takes 𝑛2/𝑢 cycles to compute (not counting
the inserted register layers for Falcon), and its design can be easily
extended to other𝑢 (see the examples of Figs. 1 and 6). Note that due
to the involved large processing bit-width, registers need to be in-
serted into the complicated operations of the accelerator for Falcon
to maintain high frequency but not required for RBLWE-ENC.

5 EVALUATION: IMPLEMENTATION AND

COMPARISON

This section gives a thorough evaluation of the proposed LAMP,
covering complexity analysis, implementation, comparison, and
discussions. Future work is also given at the end.

5.1 Complexity Analysis

In general, the proposed LAMP contains𝑢 number of multiplication
cells (in MAA blocks), (2𝑢 − 1) number of adders (not including
the one in the extra unit for the accelerator of RBLWE-ENC), two
CSRs, 𝑢 number of 𝑛/𝑢-to-1 MUXes, (𝑢 − 1) registers (not including
the ones in the CSRs as well as the inserted pipelined registers
for Falcon), and a control unit. The structure has a latency time
of (𝑛2/𝑢) cycles (not counting the pipelined layers for LAMP of
Falcon).

Besides that, in the LAMP for Falcon, each MAA block also
contains one mod reducer and two simple reducers, as shown in
Fig. 5, thus in a total of 𝑢 mod reducers and 2𝑢 simpler reducers.
Finally, there is a need of (𝑢 − 1) simple reducers in the FA for the
Falcon-based LAMP.

Finally, we have to mention that the actual complexity of the
LAMP for Falcon/RBLWE-ENC is also determined by the specific

Table 1: Implementation Performance of LAMP (for Falcon)

on FPGA Devices

design ALM/Slice1 Fmax(MHz)1 latency delay(𝜇s)1

𝑛 = 512
𝑢=4 4,724/2984 230.41/187.86 68,608 298/365
𝑢=8 7,056/3,837 227.38/178.48 35,840 158/201
𝑢=16 11,330/5,695 218.53/170.15 20,480 94/120

𝑛 = 1, 024
𝑢=4 7,237/4,706 242.78/174.46 268,288 1,105/1,538
𝑢=8 9,467/5,576 223.66/172.14 137,216 614/797
𝑢=16 13,781/7,561 221.29/170.10 71,680 324/421

1: Performance results are obtained from Stratix-V/Virtex-7
devices, respectively.

parameter sets, e.g., the bit-width of the related coefficients, which
the following implementation results will reflect.

5.2 Implementation and Comparison

Experimental setup.We have coded LAMP in VHDL with func-
tions verified through ModelSim. The experiment setup is: (i) we
selected 𝑢 = 4/8/16 for LAMP; (ii) we followed existing designs’
field-programmable gate arrays (FPGAs) (e.g., [19] used Virtex-7
and [11, 14] used Stratix-V) to use AMD-Xilinx Virtex-7 XC7V2000t
and Intel Stratix-V 5SGXMA9N1F45C2 devices on Vivado 2019.2
and Quartus Prime 17.0 platforms, respectively; (iii) we used 𝑛 =

512/1, 024 and 𝑞 = 12, 289 for Falcon [2], and 𝑛 = 256/512 (𝑞 = 256)
for RBLWE-ENC [6]; (iv) the obtained performance, namely the
number of slices (or adaptive logic modules (ALMs)), maximum
frequency (Fmax, MHz), latency cycles, delay ((1/Fmax)×latency),
and area-delay product (ADP), are listed in tables; (v) we do not list
any competing designs of Falcon as there are no schoolbook-based
similar structures in the literature, but we list those recent compact
RBLWE-ENC designs [8, 11, 14, 15, 19] for comparison, excluding
the high-speed ones in [8, 14, 19].

Performance Discussion and Comparison. As seen from
Table 1, one can see that the proposed LAMP for Falcon has a
decent performance in area usage and timing for both cases of
𝑛 = 512 and 𝑛 = 1, 024. Besides that, the maximum frequency of
the accelerator remains relatively stable when 𝑢 changes from 4 to
16. Finally, one can also observe that the latency of the accelerator
drops linearly while the resource increase does not increase at
the same rate. For instance, the latency of the design (𝑢 = 16 and
𝑛 = 512) reduces to 30% of the one of 𝑢 = 16 and 𝑛 = 512, but the
resource usage increase is only about twice (this fully demonstrates
the efficiency of the proposed design).

A similar situation happens with the performance of the LAMP
for RBLWE-ENC. As shown in Tables 2 and 3, respectively, LAMP
obtains the best ADP when 𝑢 = 16. Note that comparing with the
data in Table 1, Falcon design incurs a relatively larger area than
the RBLWE-ENC one when 𝑢 becomes bigger. This is due to the
fact that Falcon has a larger and complicated parameter sets [2])
than RBLWE-ENC.
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Table 2: Comparison on Stratix-V FPGA (RBLWE-ENC)

design ALM Fmax(MHz) latency delay(𝜇s) ADP
𝑛 = 256

[8] 3,472 201.25 65,792 327 1,135,344
[11] 1,864 316.96 65,536 207 385,848
[14] 846 221.29 66,048 298 252,108
[15] 715 423.55 33.5k 79 56,552
𝑢=4 884 342.35 16,896 49 43,628
𝑢=8 931 378.36 8,704 23 21,413
𝑢=16 1,043 383.14 4,608 12 12,544

𝑛 = 512
[8] 6,901 171.32 262,656 1,533 10,579,233
[11] 3,551 296.65 262,144 884 3,139,084
[14] 1,596 203.87 263,168 1,291 2,060,436
𝑢=4 1,614 315.00 66,560 211 341,041
𝑢=8 1,712 338.07 33,792 100 171,124
𝑢=16 1,824 320.82 17,408 54 98,972

ADP=#ALMs×delay.

Table 3: Comparison on Virtex-7 FPGA (RBLWE-ENC)

design Slice Fmax(MHz) latency delay(𝜇s) ADP
𝑛 = 256

[19] 71 510 66,304 130 9,231
[15] 189 427.095 33.5k 77.11 14,574
𝑢=16 557 352.93 4,608 13.06 7,272

𝑛 = 512
[19] 121 443 263,700 595.26 72,026
𝑢=16 1,054 330.96 17,408 52.60 55,439

ADP=Slice×delay.

While considering the comparison with the existing design,
RBLWE-ENC LAMP has significantly better area-time complex-
ities than the existing RBLWE-ENC designs. For instance, as shown
in Tables 2 and 3, LAMP (𝑢 = 16) has 21.2% and 23.0% less ADP
than [19] on Virtex-7 device, and 77.8% and 95.2% less ADP than
the best-competing designs on the Stratix-V platform, for 𝑛 = 256
and 𝑛 = 512, respectively.

5.3 Discussion

Though the proposed design strategy is based on the schoolbook
method, it nonetheless obtains efficiency for both Falcon and
RBLWE-ENC. To the authors’ best knowledge, this is the first this
kind of implementation work for the two schemes. Following the
current PQC development trend that multiple schemes will be se-
lected for future usage, developing a general method for different
schemes may also be a new trend for implementation research.

5.4 Future Work

Future work can thus focus on developing novel complexity reduc-
tionmethods to develop amore appropriate general implementation

strategy for the mentioned two schemes. Other future work can
also be deploying the proposed LAMP for a complete cryptographic
processor building as well as side-channel attacks.

6 CONCLUSION

This paper has presented a novel design method to implement a
general polynomial multiplication accelerator (LAMP) for Falcon
and RBLWE-ENC. Key efforts include a detailed algorithmic deriva-
tion process, a dedicated architectural innovation and designing
procedure, and a thorough evaluation (analysis, implementation,
and comparison). The comparison showcases the superior perfor-
mance of the LAMP over the existing ones. We hope the outcome
of this research will stimulate more follow-up work in the field.
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